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Prediction of thermal sensation level in
cold areas residential buildings using

BP neural network coupling with
improved particle swarm optimization

algorithm
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Abstract. Thermal comfort reflects the subjective satisfaction of the person in the surround-
ing environment, and usually be appraised with thermal comfort vote. However, the environmental
factors, such as air temperature, affect the thermal comfort. And, the air temperature changes
with building envelope materials. Thus, the prediction of thermal comfort is a complex nonlinear
problem. BP neural network can perfect fit the complex nonlinear model relation. But it have
limited accuracy owing to their potential convergence to a local minimum and over-fitting. In
order to improve the accuracy of prediction, an improved particle swarm optimization algorithm is
proposed to optimize the optimization ability of particle swarm optimization algorithm. And using
improved particle swarm optimization algorithm to optimize the initial weights and thresholds of
BP neural network. The outputs of these findings demonstrate the proposed model has fast conver-
gence speed and height prediction accuracy when it been applied to forecast the thermal comfort
in indoor room.
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1. Introduction

Thermal comfort researches can be called researches on human thermal sensa-
tion [1, 2]. Many scholars have carried out a large number of indoor experimental
researches on thermal comfort [3, 4]. With the constantly deepening of thermal
comfort field researches, it has been found that ASHRAE and PMV have low pre-
diction accuracy [5]. Because there is [6] multilayer iterative non-linear mapping
relationship between these factors, it is difficult to accurately predict human ther-
mal comfort degree in different environmental condition. It is found through analysis
and researches that BP neural network has strong self-learning ability and adapt-
ability and it can approximate various forms of nonlinear mapping relationships [7],
And it had been used by several authors [8–9]. Therefore, the neural network model
can be used to predict human thermal comfort degree. Leopold Mba [11] and other
people apply the artificial neural network to the forecast of air temperature and
relative humidity of buildings in wet areas. The experimental results verify that
the artificial neural network can be used to predict the influencing factors. Jörn
Von Grabe [13] explores the potential of the artificial neural network to improve
thermal sensation predictability by using the database of RP-884 adaptive model
project. The results show that the designed neural network predicts the distribution
of ASHRAE individual votes under the predetermined conditions and it outperforms
the classical PMV index in predicting quality and information range.

The BP neural network model has some limitations, owing to their potential
convergence to a local minimum and over-fitting. After comparing several algorithm
[12], the combined model can improve the accuracy of result by complementing each
other’s advantages, but some of them need complicated cross mutation operation.
The research of Leopold Mba [12], Jörn Von Grabe [13], and other people [14] are
distributed in Cameroon and other places, but there is little literature that study
on thermal comfort prediction in Asian Cold Region.

The paper puts forward an improved BP neural network method based on par-
ticle swarm optimization with contraction factors, to predict the indoor thermal
comfort in cold area enclosure structure material environment in Subtropical mon-
soon climate zone of Xi’an, China. Firstly, using normalized method process the
data, in order to speed up the gradient to find the optimal solution speed after the
standardization and improve the accuracy. And then, using PSO algorithm fixed the
problem that BP neural network assign initial weight and threshold with random
way, and using construction factor particle swarm optimization further improved
the BP neural network method. Focusing on the study that the data were used to
analyze the root mean absolute error (RMSE) et al. of every model.

2. Experimental data

The data used to validate the CFPSO-BP neural network prediction model were
from a Xi’an University. The experiment was carried out on the field of Xi’an,
China, and the data of 1042 groups of metabolic rate, clothing resistance, temper-
ature, humidity, black ball temperature and wind speed were collected. The data
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of body heat sensation was obtained by subjective questionnaire, and conducted
actual application analysis. The table 1 show the parameters of the room outside
the window, and the characteristics parameters of the staff:

Table 1. the parameters of the room outside the window, and the characteristics parameters of
the staff

Category Parameters

Outdoor window

Size 1.5m × 1.5m

Material
Aluminum alloy emissivity < 0.25

Air layer thickness 12mm

Heat transfer coefficient 2.8W·m−2 · K−1

Transmittance 0.44

Indoor heat source
Staff heat dissipation 108W

Lighting power 15W·m−2

Contents of the thermal questionnaire: (1) general thermal comfort right now et
al.

Indoor objective measurement data and subjective survey questionnaire data
obtained as shown in Figures 1 and 2.
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The autumn temperature in Xi’an in 2012 was between [15◦C, 24◦C], which be-
longs to the early autumn rainy season, and the temperature change is decreasing.
The average precipitation during this period was 151.2 mm, which belongs to the
rainy season and the percentage of humidity fluctuates up and down at 20%. The
average radiation temperature changed little. The wind speed in the indoor envi-
ronment was maintained between [0, 0.2]m/s, and the environment was in general.
Indoor metabolites were distributed in the distribution of [1, 2] between the staff
in a relaxed state of sitting or standing mild activity. Clothing resistance in the
[0.6, 1.3]clo, of which the first 30 samples concentrated in the 1clo, dress for the
jacket, pantyhose and so on. After 70 samples of clothing thermal resistance was
more dispersed, indicating that with the temperature drop, the different sensations
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among staffs were remarkable.

3. Method

3.1. Particle swarm optimization algorithm with constric-
tion factors

1) Particle swarm optimization:
Using the particle swarm optimization to improve the neural network, there are

simple strategy [15, 16] and less parameters that are needed to be adjusted, and with-
out operations such as coding, cross and compilation in the genetic algorithm, the
global optimum can be found by tracking the optimum value that is found currently.
The learning optimization problems of the neural network have huge advantages with
complex calculation, fast implementation speed [17] and high accuracy advantages.

2) Particle swarm optimization with constriction factors (CFPSO)
PSO algorithm does not actually control the speed of particles [18]. Clerc pro-

posed the method of using the shrinkage factor χ, which describes a method to select
the values of ω, c1, and c2 to ensure that the particle optimization algorithm con-
verges, and by appropriately selecting these parameters, the boundary limit to the
velocity can be eliminated and the insufficient search caused by the improper speed
boundary settings can be avoided [19]. The velocity updating formula of particles
becomes:

vi,j(k + 1) = χ{vi,j(k) + c1r1[pi,j(k) − xi,j(k)] + c2r2[pg,j(k)− xi,j(k)]} , (1)

χ =
2

|2− φ−
√
φ2 − 4φ|

, φ = c1 + c2, φ > 4 . (2)

3.2. Construction factor PSO-BP neural network structure

The structure of neural network represents Figure 3.
Algorithm design as follows:
Part1: sample data and normalization of sample data and
Part2: Initialization of BP neural network parameters
Part3: CFPSO optimizes initial weights

Step1: randomly initialize the positions and velocities of particles (population
size is m) in a population;
Step2: evaluate the fitness of each particle;
Step3: for each particle, compare its fitness to its experienced best location
pbest, if it is better, take it as the current best position pbest;
Step4: for each particle, compare its fitness to its experienced best location
pbest of the whole part, if it is better, take it as the current best position pbest;
Step5: update the speed and position of each particle;
Step6: check whether a default maximum algebraic Gmax is reached; if satisfied,
then output gbest and its target value and stop the algorithm; otherwise, turn
to Step2.
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Fig. 3. Structure of thermal comfort prediction neural network

Part4: using the optimized neural network for prediction
Step1: get the initial weights and thresholds of the best neurons
Step2: error calculation
Step3: weights and threshold updates

Part5: verify model accuracy
The algorithm flow chart is shown in Figure 4.

3.3. Data preprocessing and model validation [20]

In this study, data are normalized by max-min standardization method formula
(3), and the model performances are characterized by the root mean square error
(RMSE), the mean absolute error (MAE) and the coefficient of correlation (R).
RMSE, MAE and R can be evaluated as:

xi =
xi − xmid

1
2 (xmax − xmin)

. (3)

The xi represents the input or output data, and xmid represents the intermediate
value within the changing range of data, and xmax represents the maximum value
of the changing range of data, xmin represents the minimum value of the changing
range of data.
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Fig. 4. CFPSO algorithm for hermal sensation prediction

MAE =
1

n

n∑
i=1

|Ei| =
1

n

n∑
i=1

|xi − x̂i| , (4)

RMSE =

√√√√ 1

n

n∑
i=1

E2
i =

√√√√ 1

n

n∑
i=1

(Xi −
⌢

X i)2 , (5)

R =

N∑
i=1

(Pi − P̄ )(Oi − Ō)√
N∑
i=1

(Pi − P̄ )2
N∑
i=1

(Oi − Ō)
2

. (6)

P is the actual output, O is the expected output.
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4. Result and discussion

The data used to validate network prediction model were from a Xi’an University.
The experiment was carried out on the field of Xi’an, China, and the data of 1042
groups of metabolic rate, clothing resistance, temperature, humidity, black ball tem-
perature, wind speed were collected and body heat sensation. The study used 942
data sets as training samples and 100 data sets as test samples. After normalized
processing with formula (3), each group uses body heat sensation to be expected
output, other influencing factors to be input. The parameters BP neural network
structure are set 13 hidden layer, trainlm training function and 0.05 learning rate,
according to experiments result in Table 2, Table 3. The parameters of the PSO-BP
network are set as:

c1 = c2 — Learning factor/acceleration factor is 2.05;
[Vmin, Vmax] — The velocity range of the particle is set to [−1, 1];
I — Evolutionary algebra is set to 100;
Sizepop — Swarm size set to 30;
ω — The inertia weight is set to 0.5;
Gmax — The maximum number of evolution is set to 100;
Popmax — The maximum population area is set to 5;
Popmin — The minimum value of the population area is set to −5;
The network include 78 weights from input layer to the hidden layer, and there

are 13 weights from the hidden layer to the output layer. The optimal initial weights
obtained by the PSO-BP algorithm are shown in Table 5.

The parameters of the construction factors optimization BP algorithm are set as
follows:

c1 = c2 — Learning factor/acceleration factor is 2.05;
χ — Contraction factor is set to 0.729 according to formula (1);

Table 2. Comparison of five improved algorithm predictions

Training function Number of
neurons RMSE MAE Correlation

coefficient TIME/S EPOCH

traingd 7 0.2833 0.6100 0.43337 36 1000

13 0.2662 0.5700 35 1000

traingdm 7 0.6607 1.1700 0.42831 1 15

13 0.6010 0.8500 1 12

traingdx 7 0.3550 0.6100 0.27285 3 16

13 0.2818 0.4800 2 67

trainlm 7 0.2544 0.5200 0.52971 1 25

13 0.2477 0.4200 1 22

trainbfg 7 0.2680 0.4400 0.13677 2 26

13 0.2604 0.5400 1 16
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Table 3. Four different learning rate

Learning rate RMSE MAE EPOCH

0.1 0.2421 0.5500 17

0.05 0.2381 0.4900 15

0.02 0.2390 0.4500 14

0.01 0.2477 0.4200 14

Table 4. Optimal initial weight table from hidden layer to ouput layer

1 2 3 5 6

−1.9189 −0.3660 −2.0304 −0.1246 1.3160

2.1806 −1.8074 3.2791 2.6945 1.1495

−0.2624

Fig. 5. Particle swarm algorithm modified the weight of BP network

Figure 5 presents the result of correlation coefficient between the actual output
and the expected output. The results becomes 0.63176 after using the particle swarm
optimization algorithm, which indicates that the actual output is most closely related
to the expected output and the training effect of the network is better. And the
table 5 represents the comparison between BP neural network and PSO-BP neural
network.

Table 5. The correlation coefficient between two neural networks

Neural networks Correlation coefficient

BP 0.52971

PSO-BP 0.63176

From the table6, the PSO-BP neural network with construction factor converges
faster than the PSO-BP network.
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Table 6. Accuracy of Different Neural Network

Neural network RMSE MAE EPOCH

BP 0.2581 0.7702 263

PSO-BP 0.2042 0.4017 16

CFPSO-BP 0.1965 0.4108 11

From the predicted results in the Table 6, we can see that these neural networks
can predict human thermal comfort according to the factors that affect the thermal
comfort. From the RMSE and MAE in the Table 6, it can be seen that the prediction
accuracy and adaptability of the PSO-BP network and CFPSO-BP network are
enhanced for one time, because PSO can find the global optimal value by tracking the
optimal value that is found currently, and the neural network learning optimization
problems with complex calculation have great advantage; therefore, there are fast
realization speed and high precision. However, the CFPSO-BP algorithm achieves
the way of controlling the speed range with shrinkage factors, and the velocity range
of particles that are not needed to set is [Vmin, Vmax], which avoids that the value is
too high to pass through the best solution and the value is too small to sufficiently
search space; therefore, the prediction accuracy and adaptability of the network can
be further enhanced.

5. Conclusion

In this paper, a network model for indoor thermal comfort index prediction in
cold area envelope material housing is established, and a CFPSO-BP neural network
model with improved initial weight is proposed by using particle swarm optimization
with shrinkage factor to predict indoor thermal comfort. Finally, with the qualita-
tive analysis, compare the prediction effect of the application of CFPSO-BP neural
network, BP neural network and PSO-BP neural network to predict the thermal
comfort index. Through examining with the measured data in October, 2012–June,
2015 in Xi’an, the result show that the proposed CFPSO-BP method can effectively
solve the problem that the BP neural network is easily converged to the local min-
imum and the accuracy is limited in the thermal comfort prediction. At the same
time, the CFPSO can solve the problem that the standard PSO cannot control the
speed range, to speed up the network forecast speed. Therefore, CFPSO-BP neural
network is superior to the existing BP neural network method in indoor thermal
comfort index prediction.
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